fabsurplus.com




FEI TECNAI TF30 High resolution TEM for Sale


fabsurplus.com is pleased to announce the availability of the following listed used FEI TECNAI TF30 High resolution TEM. This FEI TECNAI TF30 High resolution TEM is available for immediate sale. Please click on the "More Details" button if you'd like to get more details, photos and specifications of this High resolution TEM and your request will be forwarded to our customer representatives automatically. Crating, refurbishment and delivery can be quoted on request.


FEI TECNAI TF30 Equipment Details

SDI ID: 86507
Manufacturer: FEI
Model: TECNAI TF30
Description: High resolution TEM
Version: 300 mm
Vintage: 01.12.2007
Quantity: 1
Sales Condition: as is where is
Lead Time: immediately
Sales Price (each): Inquire
Comments:
Deinstalled, warehoused. Can be inspected by appointment.

Price: Please make best offer.

The Tecnai TF30 ST, is a high-resolution analytical transmission electron microscope. The small electron wavelength, provided by the high accelerating voltage, 300 kV, the coherent electron source, provided by the Schottky field-emission electron gun (FEG), and the high mechanical and electrical stability of this instrument allow for high-resolution imaging with an information resolution limit of 0.14 nm. Equally important, the small spherical aberration of the "super twin" objective lens (Cs = 1.2 mm) and the high brightness FEG allow for microanalysis at both high spatial resolution and high probe current (>0.6 nA in a 1 nm spot), which is important for obtaining good signal-to-noise ratios. A scanning unit enables the instrument to acquire images and analytical data not only in the stationary mode, but also by scanning a fine electron probe with a diameter as small as 0.17 nm across the specimen. Owing to these basic features, this instrument is ideally suited for studying the structure and the local chemical composition of materials on the nanoscale. The synergy of various powerful methods of analytical and high-resolution TEM techniques in the same instrument greatly enhance the capability of SCSAM, particularly for nanotechnology research.

Under coherent imaging conditions, the Tecnai F30 in conjunction with digital image processing of images recorded at different focus settings of the objective lens, enables quantitative HRTEM with a resolution of 0.14 nm. The STEM unit also enables "Z-contrast" imaging by detection of the electrons scattered to a high-angle annular dark-field (HAADF) detector, which constitutes a powerful technique for high-resolution imaging under conditions that reduce the interpretation problems associated with conventional HRTEM imaging.

The Tecnai F30 is equipped with an EDAX XEDS system by EDAX. The heart of this system is a Li-drifted Si detector, with an energy resolution of 130 eV.

The basic capabilities of the Tecnai F30 are further enhanced by a post-column, imaging energy filter (GIF 2002 by Gatan). This component forces the electrons on an energy-dispersive path, enabling a powerful variety of advanced methods of microanalysis.

Among these advanced methods, electron energy-loss spectroscopy (EELS) is of particular importance. The energy-dispersive plane of the filter, when imaged onto the slow-scan CCD camera of the GIF, reveals an electron energy-loss spectrum of the illuminated area. Electron energy-loss spectra contain absorption edges that are specific to the elements in the specimen. By recording the electron intensity in the energy-dispersive plane with a CCD camera, the local chemical composition of the specimen can be analyzed. This method of high spatial resolution chemical microanalysis is particularly powerful for light elements.

Apart from this application, electron energy-loss spectra can provide information on the local electronic structure and atom coordination. Information on the electronic structure becomes available by analyzing the fine structure of energy-loss spectra near absorption edges, i.e. by analyzing the energy-loss near-edge structure (ELNES). Usually, this type of analysis is carried out on spectra obtained with a focused electron probe and an EELS spectrometer that allows for parallel data processing.

The second important application of the imaging energy filter is "zero-loss imaging." Given the energy-dispersive ray path and the energy-dispersive plane of the GIF, energy filtering of the transmitted electrons is achieved by placing a slit aperture in the energy-dispersive plane. In this way, it is possible to admit only electrons with a particular energy (or, equivalently, a particular energy-loss) to the image or diffraction pattern. One important mode of operation of the filter is known as "zero-loss filtering." In this case, the slit aperture is positioned such that only those electrons that suffered no energy loss in the specimen can pass. This means that only elastically scattered electrons arrive at the electron detector (viewing screen, photographic plate, or CCD camera). Zero-loss filtering has two major applications: imaging of thick specimens and quantitative electron diffraction (ED), particularly with a highly convergent primary electron beam (CBED).

Finally, the imaging energy filter (GIF) enables elemental mapping via "electron-spectroscopic imaging" (ESI). In this technique, the energy filter is employed for recording images with electrons that have lost a well-defined, element-specific amount of kinetic energy in the specimen. For elemental mapping, it often suffices to record ESI images with three different settings of the slit aperture in the energy-dispersive plane, which makes ESI a much more efficient technique than the competing technique of scanning the specimen with a focused electron beam and recording the entire EELS spectra at every scan point.

Attachments: 39 Files
Send Me More Details about this item.



Not the item you were looking for?

Ask SDI fabsurplus.com!

If you are looking for a specific piece of semiconductor equipment let us know what type of semiconductor manufacturing equipment you would like to buy, and we will conduct a search for what you are looking for.

Inquiry

The data provided herein is not an offer capable of acceptance.
The information contained on this page is, to our knowledge and information, accurate, but it may contain errors and therefore we do not warrant the completeness or accuracy of the information contained on this page.
Any offer by you to purchase the equipment described on this page shall be subject to our standard terms and conditions of sale.

sdi logo

Established in 1998, SDI has now built up an international network of sales agents and offices.

SDI has evolved into one of the largest semiconductor equipment brokerages by concentrating on professionalism, customer service and value for money.

Read more about us




View all FEI items for sale
View all TECNAI TF30 items for sale


Ask SDI fabsurplus.com! If you can't find what you need, or are looking for a specific piece of semiconductor equipment. Let us know what type of semiconductor manufacturing equipment you would like to buy, and we will conduct a search for what you are looking for.

Inquiry



sdi logo

Click here for all contact information.
SDI-Fabsurplus Srl Italy, SDI-Fabsurplus Ireland ltd. and SDI-FABSURPLUS LLC. N. America




sdi fabsurplus.com ebay store

Visit SDI-Fabsurplus LLC's

Ebay Store


SDI fabsurplus.com works by using the latest technology to continuously monitor the used equipment market place.
If you want to join our mailing list, please send click on the button below to send an e-mail to subscribe to our monthly equipment news update.

Request monthly equipment news





We'd love to get your feedback about our website and our services!
Fill in the Feedback Form