

Vecco

E475 MOCVD

美國威科儀器

金屬有機化學氣相沉積系統

E475金屬有機化學氣相沉積系統說明

金屬有機化學氣相沉積系統

1主系統反應器

2電腦主機 3微控制器

1. Veeco E475 MOCVD System Reactor x1

金屬有機化學氣相沉積系統 反應器

1. Reactor's Subsystem Contents

反應器 子系統說明

- As/P Growth Chamber
- Growth Chamber Exhaust System
- Loadlock & Platter Transfer
- Loadlock Exhaust System
- Glovebox System
- Water Cooling Assembly System
- Dual Phosphorous Trap Assembly
 System

- Hydrogen Detector System
- System Electronics and Control Modules - 380V
- EpiView Control and Monitoring
 Program
- Epiview Local Control Interface
- Liquid Refrigerator Bath
- 1/8" SS Bubbler Legs
- Custom Gas Panel

2. Veeco E475 Monitoring System

系統電腦主機

In-Situ Monitoring System

- RealTemp 200 Monitoring System
- IDRT/RT Local Control Assembly
- Consumables Package
- Step Up Platform

3. Veeco E475 MOCVD Piezocon x2

氣體微控制閥共兩組

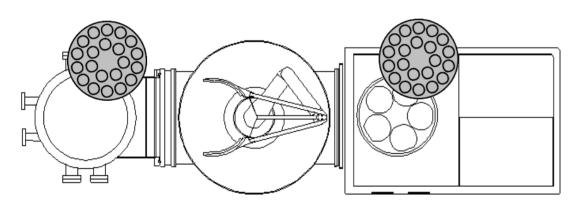
Custom Gas Panel Controller Bubbler:

 DETex1, DMZnx1, TMInx2, TMGa x2, TMAI, CBr4x1, TBAx1, Disilanex1,

Dilution Network Source Manifold (Single Bubbler)

Hydride

- Dopant#1: Disilane
 Dual Input Hydride with One Standard and One
 Dilution Network Manifold
- Dopant #2: Customer Specified Dopant Single Input
 Hydride



E475效能說明與比較分析

Vacuum Loadlock Minimizes Idle Time Between Runs

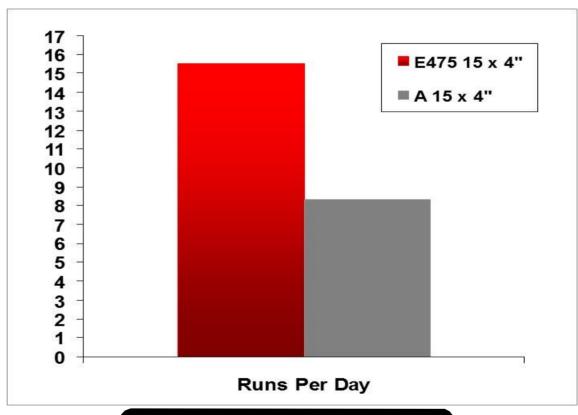
E475

Loadlock
8 Minutes Between Runs
Reactor Remains Under Vacuum
Between Runs

- Reactor remains under vacuum during platter transfer
- Platters can be loaded with wafers at any time during process cycle

Competitive Approach

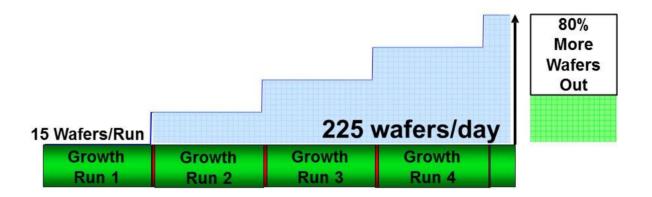
No Loadlock
Open Chamber Between Runs
1 hr Between Runs



- Reactor is open for load/unload
- Must cool & vent reactor
- Large idle time for wafer load/unload

E475 Provides Highest Proven Throughput

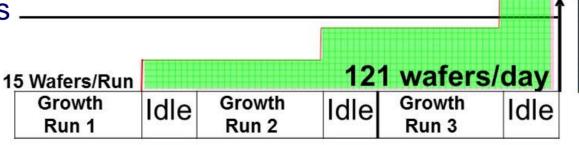
- Vacuum loadlock minimizes time between runs
- Platter transfer occurs at high temperature (300°C - 400°C)
- No reactor baking or vacuum cleaning needed between growths
- Fast growth rate (>14 μm/hr)



Standard 6-7 um Epi structure

Loadlock Design - 80% Higher Throughput

E475 Loadlock System allows continuous running



Reactor idle time 8 min. between ~1hr. runs

Non-Loadlock system must open reactor between runs to load wafers -

Reactor idle time ~ 0.5 hr between 2 hr. runs

* 7

Idle

Losses

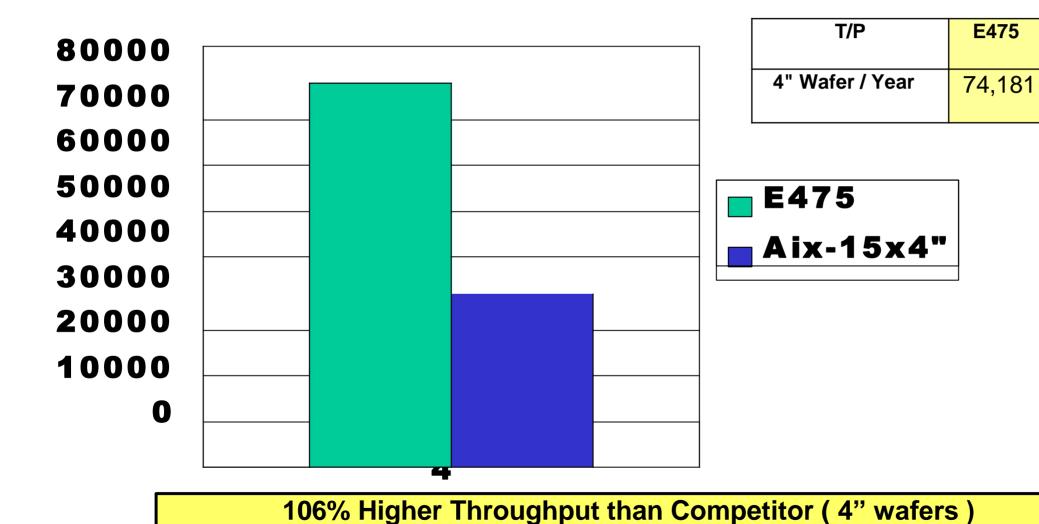
Wafers Out

E475 vs Competitor Throughput Comparison

Throughput	E475 15x4"	Competitor 15x4"
Steady state runs / day	15.5	8.1
Steady state runs / week	108	57
Steady state runs / year	5646	2970
Wafers / run	15	15
Tool uptime	88%	81%
Realized runs / year	4945	2392
Total realized wafers / year	74,181	35,881

100% more wafers with E475

Overall COO Advantage


Systems Compared		E475		Competitor A	
		15x4"	-	15x4"	
RPD		15.5		8.1	
Steady State Runs/Year / System	5646				
Wafers/Run		15		15	
SteadyState Wafers/Year		84,691		44,555	
% Uptime		88%		81%	
Realized Runs/Year		4945		2392	
Realized Wafers/Year		74,181		35,881	
Total Realized Wafers/Month		6182		2990	
# chips per wafer		50		50	
Yield		100%	100%		
Device Value (ASP)	\$	8	\$	8	
Revenue (\$) per wafer	\$	400	\$	400	
Revenue (\$) per system / year	\$	29,672,485	\$	14,352,230	
Epi cost (\$) per system per year	\$	1,375,087	\$	1,101,003	
Substrate cost (\$80 per wafer)	\$	5,934,497	\$	2,870,446	
Margin	\$	22,362,901	\$	10,380,781	

Margin improvement with E475

+115%

E475 – Highest Throughput

~ .

Comp A

35,881